Parareal Algorithm Implementation and Simulation in Julia

Tyler M. Masthay
Department of Computer Science
University of Dayton
Dayton, Ohio 45469–2160 USA
tmasthay1@udayton.edu

ABSTRACT

We present a full implementation of the parareal algorithm—an integration technique to solve differential equations in parallel—in the Julia programming language for a fully general, first-order, initial-value problem. Our implementation accepts both coarse and fine integrators as functional arguments. We use Euler’s method and another Runge-Kutta integration technique as the integrators in our experiments. We also present a simulation of the algorithm for purposes of pedagogy.

KEYWORDS

Concurrent programming, Euler’s method, Julia, Runge-Kutta methods, parareal algorithm, ordinary differential equations.

1 INTRODUCTION

The parareal algorithm was first proposed in 2001 by Lions, Maday, and Turinici [3] as an integration technique to solve differential equations in parallel. We present a full implementation of the parareal algorithm in the Julia programming language (https://julialang.org) [4] for a fully general, first-order, initial-value problem. Furthermore, we present a simulation of the algorithm for purposes of pedagogy. Our implementation accepts both coarse and fine integrators as functional arguments. We use Euler’s method and another Runge-Kutta integration technique as the integrators in our experiments.

2 THE PARAREAL ALGORITHM

The parareal algorithm is designed to perform parallel-in-time integration for a first-order initial-value problem. The algorithm involves two integration techniques, often known as the ‘coarse’ integrator and the ‘fine’ integrator. For the algorithm to be effective, the coarse integrator must be of substantially lower computational cost than the fine integrator. The reason will become apparent later in this section. Consider the differential equation (1) given by

\[y'(t) = f(t, y(t)) \quad t \in [a, b] \]

with its associated initial-value problem (2)

\[y(t^*) = y^* \quad t^* \in [a, b]. \tag{2} \]

For simplicity, let us assume \(t^* = a \), so that the solution only extends rightward. To obtain an approximate solution to equation (1) satisfying the initial condition (2), we partition our domain into \([t_0 = a, \ldots, t_N = b] \) with uniform step size \(\Delta \). We now precisely define an ‘integrator’ as a function from \((0, \infty) \times \mathbb{R}^2 \times \mathbb{R} \) to \(\mathbb{R} \), where \(\mathbb{R} \) is the set of all Riemann integrable functions. For example, the integrator \(I \) given by

\[I(\delta, x_0, y_0, g) = y_0 + g(x_0, y_0)\delta \]

is the integrator corresponding to Euler’s method with step size \(\delta \). Let \(C \) and \(F \) be the coarse and fine integrators, respectively. Define

\[
\begin{align*}
 y_{0,1} &= y(t_0) = y^* \\
 y_{n+1,1} &= y(t_{n+1}) = C(\delta, t_n, y_{n,1}, f).
\end{align*}
\]

Since \(y_{n+1,1} \) depends on \(y_{n,1} \), this algorithm is inherently sequential. Partition \([t_n, t_{n+1}] \) into \([t_n^0 = t_n, \ldots, t_n^m, \ldots, t_n^M = t_{n+1}] \) with uniform step size \(\delta < \Delta \). Define

\[
\begin{align*}
 z_{n,1}^0 &= y(t_n^0) = y_{n,1} \\
 z_{n,1}^{m+1} &= y(t_n^{m+1}) = F(\delta, t_n^m, z_{n,1}^m, f).
\end{align*}
\]

This yields an approximate solution \(z_{n,1}^0, \ldots, z_{n,1}^M \) to (1) over \([t_n, t_{n+1}] \) with initial conditions

\[y(t_n) = y_{n,1}. \]

Since \(z_{n,1}^m \) does not depend on \(z_{n,1}^n \) for \(n \neq n \), we can compute these approximations in parallel. After the last subproblem is solved, we simply combine the solutions on each subdomain to obtain a
solution over the whole interval. However, our values \(\{y_{1,1}, ..., y_{n,1}\} \) are relatively inaccurate. The vertical spikes in the orange graph separating the coarse and fine predictions in Figure 1 illustrate this error. However, \(z_{n-1,1}^M \) is a better approximation for \(\phi(t_k) \) where \(\phi \) is the exact solution to the differential equation. We use this to obtain a better set of points \(\{y_{n,2}\} \) for the coarse approximation. We do this by first defining \(w_{n,1} = y_{n,1} \) and then defining

\[
\begin{align*}
 w_{1,2} &= y_{1,1} = y_1^c \\
 w_{n,2} &= \psi(\Lambda, \Delta, \delta, z_{n,1}^M, f) \\
 y_{n,2} &= (w_{n,2} - w_{n,1}) + z_{n-1,1}^M.
\end{align*}
\]

Thus, \(w_{n+1,2} \) serves as a new prediction given a more accurate previous prediction \(y_{n,2} \) since \(z_{n-1,1}^M \) has now been taken into account in calculating \(y_{n,2} \). In general, we continue evaluating so that for \(k > 1 \), we have

\[
\begin{align*}
 w_k &= y_{1,k} = y_k^c \\
 w_{n,k} &= \psi(\Lambda, \Delta, \delta, z_{n,k-1}^M, f) \\
 y_{n,k} &= (w_{n,k} - w_{n,k-1}) + z_{n-1,k-1}^M.
\end{align*}
\]

Note that since \(y_{n,k} \) is dependent on \(w_{n,k} \), this step must be done sequentially. As \(k \) increases, \(w_{n,k} - w_{n,k-1} \to 0 \), which means that \(y_{n,k} \) converges to the value that the fine integrator would predict if fine integration were simply done sequentially. Thus, each \(k \) denotes fine integration over the whole interval. This means that the total computation performed is much greater than if fine integration were performed sequentially. However, the time efficiency of each iteration has the potential to be improved through concurrency. Since fine integration is more computationally intensive, this improvement in the run-time efficiency may compensate for the cumulative computation performed.

Let \(K \) be the total number of iterations necessary to achieve a desired accuracy of solution and \(P \) be the number of subintervals into which we divide according to the coarse integrator. If \(K = 1 \), then we achieve perfect parallel efficiency. If \(K = P \), then we likely slowed the computation down. The parareal algorithm is guaranteed to converge to the solution given by the sequential fine integrator within \(P \) iterations. For a more complete treatment of this convergence analysis, we refer the reader to [2]. For fully general pseudocode, we refer the reader to [1, 5].

3 IMPLEMENTATION IN JULIA

Listing 1 presents an implementation of the parareal algorithm (from the prior section) in Julia. The `@async` macro within the loop causes the program to evaluate the first expression to its right as a concurrent task (i.e., the `for` loop assigning values to `sub`). The `@sync` macro causes the main program thread to wait until all tasks (spawned in the first expression to its right with an `@async` or `@parallel` macro) complete. Once all concurrent tasks are complete, execution of the program proceeds sequentially. Given the semantics of these macros, the program in Listing 1 correctly perform concurrent integration. The sequential and parallel versions of this implementation have no significant differences in run-time efficiency. However, if a `sleep` statement is placed in the argument of `fineIntegrator`, the parallel version runs much faster. This demonstrates that use of those two macros does lead to concurrent program execution.

4 GRAPHICAL ALGORITHM SIMULATION

The function `simulate` in Listing 2 creates a graphical simulator of the parareal algorithm. This function can be used to introduce the parareal algorithm to students in a numerical analysis course. The first line gets the sequential solution from the fine integrator (the ‘ideal’ solution) and the second line gets the history of the computations that took place during the parareal execution. The main loop over the variable \(k \) then displays the inner workings of the algorithm. The ideal solution is plotted, with a scatter plot of the points obtained from the coarse integrator. To simulate the parallel nature of the algorithm, random progress is made on randomly selected subdomains. Thus the plot dynamically makes partial progress on different subdomains until all subdomains are finished with the fine integration. After this, the plots are connected into the current iteration’s approximation. During the next iteration, the previous guesses from the coarse integrator are displayed in red and the new guesses from the coarse integrator are displayed in green. As \(k \) increases, these guesses converge to the ideal solution.

In addition to the use of this function for pedagogical purposes, it can be used to investigate the types of curves for which the parareal algorithm might be practical. For instance, consider the differential equation

\[
y'(x) = \sin(x), \quad x \in [-20, 20]
\]

with \(y(-20) = 10, \Delta = 4 \) (10 points), and \(\delta = 0.008 \) (500 points). Figure 2 shows the first and ninth iterations respectively. The ninth iteration’s large error on the right end of the interval shows that this is an example where parareal convergence is slow. This is as inefficient as possible, needing as many iterations as subdomains in order for the solution to converge. However, the simulation also shows that if \(f(x, y) = \sin(x)e^x \), then the solution converges after just one iteration. These two examples show that the algorithm’s efficiency can be highly dependent on the integrand. Below the simulation function are Euler’s method and another Runge-Kutta integration technique that can be used as examples to be passed as first-class functions as coarse or fine integration techniques to the ‘parareal’ or ‘simulate’ functions. A Git repository of both the implementation and graphical simulation is available at https://bitbucket.org/spurgeon/parareal-implementation-and-simulation-in-julia. Note also that we use the Julia Plots package to generate the graphs, available at https://juliaplots.github.io/.

REFERENCES

Listing 1: Implementation of the parareal algorithm in Julia

```julia
@everywhere

function parareal(a, b, nC, nF, K, y0, f, coarseIntegrator, fineIntegrator)
  # Initialize coarse information
  xC = linspace(a, b, nC + 1);
  yC = zeros(size(xC, 1), K);
  deltaC = (b - a) / (nC + 1);
  yC[1, :] = y0;

  # coarse integrator partially evaluated
  cIPEvalued = (x, y) -> coarseIntegrator(deltaC, x, y, f);

  # get initial coarse integration solution
  for i = 2:(nC + 1)
    yC[i, :] = cIPEvalued(xC[i - 1], yC[i - 1, 1]);
  end
  correctC = copy(yC);

  # Initialize fine information
  xF = zeros(nC, nF + 1);
  for i = 1:nC
    xF[i, :] = linspace(xC[i], xC[i + 1], nF + 1);
  end
  sub = zeros(nC, nF + 1, K);
  deltaF = xF[1, 2] - xF[1, 1];

  # fine integrator partially evaluated
  fIPEvalued = (x, y) -> fineIntegrator(deltaF, x, y, f);

  for k = 2:K
    # run fine integration on each subdomain
    tic();
    @sync for i = 1:nC
      sub[i, 1, k] = correctC[i, k - 1];
      @async for j = 2:(nF + 1)
        sub[i, j, k] = fIPEvalued(xF[i, j - 1], sub[i, j - 1, k]);
      end
    end
    toc();

    # predict and correct
    for i = 1:nC
      yC[i + 1, k] = cIPEvalued(xC[i], correctC[i, k]);
      correctC[i + 1, k] = yC[i + 1, k] - yC[i + 1, k - 1] + sub[i, nF + 1, k];
    end
  end
  yF = zeros(nC*(nF + 1), K - 1);
  for k = 2:K
    yF[:, k-1] = reshape(sub[:, :, k], nC*(nF + 1));
  end

  return reshape((xf, yF), nC*(nF + 1), yF, xC, correctC, yC);
end
```

Figure 2: Slow parareal example. (left) Solution after first iteration with Euler’s method. (right) Solution after ninth iteration with Euler’s method.
Listing 2: Implementation of a graphical simulator of the parareal algorithm in Julia

```julia
@everywhere function fullMethod(n,a,b,y0,f,integrator)
    # setup domain and range space
    x = linspace(a,b,n+1);
    deltaX = x[2] - x[1];
    y = ones(n+1,1);

    # initialize left endpoint
    y[1] = y0;

    # integrate each point
    for i=1:n
        y[i+1] = integrator(deltaX,x[i],y[i],f);
    end
    return x,y;
end

function simulate(a,b,N,M,K,y0,f,coarseInt,fineInt,showPrev)
    x1, y1 = fullMethod(N*(M+1),a,b,y0,f,fineInt);
    x, y, yF, sub, xC, yC, iC = parareal(a,b,N,M,K,y0,f,coarseInt,fineInt);
    xF = (reshape(x,M+1,N))';
    fine = M+1;
    for k=2:K
        display(plot(x1,y1));
        if(showPrev && k > 2)
            display(scat(xC,yC[:,k-2],color="red",legend=false));
        end
        display(scat(xC,yC[:,k-1],color="green",legend=false));
        done = zeros(Int64,N,1);
        workingSubdomains = 1:N;
        while(done != (M+1) * ones(N,1))
            index = Int64(ceil(size(workingSubdomains,1) * rand ()));
            currThread = workingSubdomains[index];
            while(done[currThread] == M+1)
                currThread = Int64(ceil(N * rand ()));
            end
            currThreadPlot = Int64(ceil(fine * rand ()));
            totalAdvance = done[currThread] + currThreadPlot;
            if(totalAdvance > fine) totalAdvance = fine; end
            newP = (done[currThread]+1):totalAdvance;
            display(plot(xF[currThread,newP],sub[currThread,newP,k],color="black");
            done[currThread] = totalAdvance;
            workingSubdomains = find( ((x)->x != M+1), done );
            print(join(["Working on subdomain ", currThread, "...", "Pending Subdomains:", workingSubdomains, 
"\n"]));
        end
        display(plot(x,yF[:,k-1],color="orange");
        sleep(5);
    end
end

function euler(delta,x0,y0,f)
    return y0 + delta * f(x0,y0);
end

function rungeKutta(delta,x0,y0,f)
    k1 = f(x0,y0);
    k2 = f(x0+delta/2,y0 + (delta/2)*k1);
    k3 = f(x0+delta/2,y0 + (delta/2)*k2);
    k4 = f(x0+delta,y0+delta*k3);
    return y0 + (delta/6)*(k1+2*k2+2*k3+k4);
end
```

```